

Dem Elektroauto und Photovoltaik gehören die Zukunft

Vortrag am 20.05.2008 in Eisenstadt

H. Berger FH JOANNEUM

Studiengang Elektronik & Technologiemanagement

Elektronik & Technologiemanagement

Warum brauchen wir dringend einen Paradigmenwechsel?

- Klimawandel
 - Begrenzte Rohstoffe

- Dramatische Zunahme an Bedarf nach individueller Mobilität

KLIMAWANDEL mit dramatischen Folgen

Hurricans (+60% in 15Jahren) Dürre Steigender Meeresspiegel Winter ohne Schnee Arktis ohne Eis

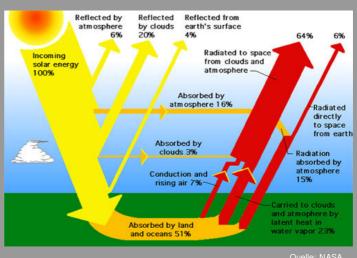
(I) Sea-level rise (m) 1.0 All IS92 Model ensemble all SRES envelope 0.8 All SRES envelope 0.6 ncluding land-ice Bars show the range in 2100 produced by 0.4 veral models 0.2 0.0 2000 2050 2100

1900

2000

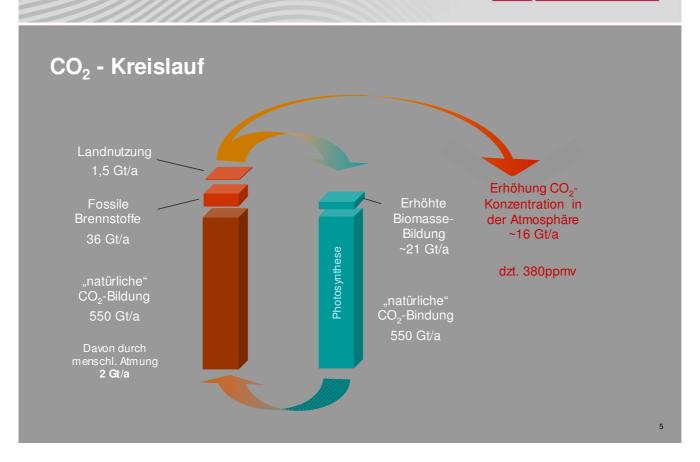
Elektronik & Technologiemanagement

KLIMAWANDEL Ursachen

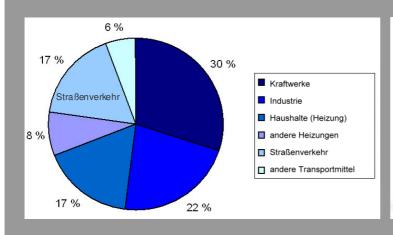

Störung der Energiebilanz durch Behinderung der Abstrahlung (Infrarot)

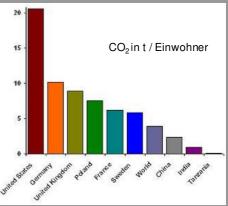
dzt. ~ $2W/m^2 \rightarrow$

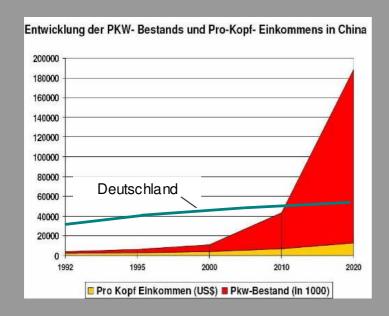
100-facher Weltenergieverbrauch


Verursacher:

 CO_2 : 60% CH₄ (Methan): 20% N₂O, FCKW, Ozon: 20%

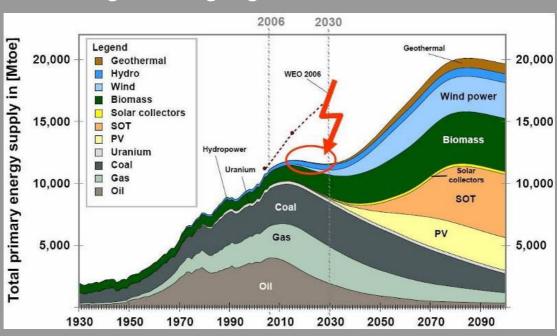

Eingestrahlte Energie (100%-Wert): 5,6x10²⁴J/Jahr




KLIMAWANDEL Verursacher

PKWs in China

"Wir werden ein System errichten, dass zum Energiesparen und der Reduzierung von Abgasen verpflichtet "


70% der berufstätigen Chinesen sparen auf ein eigenes Auto

Parteichef Chinas Hu Jintao am 17. Parteitag:

Elektronik & Technologiemanagement

Szenario Energieversorgung

8

Was sind die Lösungen / Alternativen ?

- Kraftstoffe aus Kohle
- Kraftstoffe aus Erdgas
- Bio-Kraftstoffe
- Wasserstoff
- Verbrauchsreduzierung durch
 Hybrid-Technologie bzw.
 reine Elektro-Fahrzeuge

9

Elektronik & Technologiemanagement

Biodiesel

Herstellung durch Veresterung von Pflanzenölen (Raps, Ölpalme usw.)

Schadstoffarme Verbrennung

Geringere Partikel- und Russemission (ca. 50%)

Fast gleiche Energiedichte wie fossiler Diesel

Gut biologisch abbaubar (→ Nachteil für Lagerung)

- → Ca. 1000kg Biodiesel aus 1 ha Raps-Anbaufläche
- Hoher Energieaufwand für Bearbeitung, Veresterung usw.

→ sinnvoll bei Verwendung der Reststoffe, bzw. als Alternative zur Flächenstilllegung

Rudolph Diesel 1858 -1913 Experimentierte bereits 1892 mit Pflanzenölen

	Diesel	Biodiesel
Dichte	820kg/m ³	880kg/m ³
Energie- Dichte	11,8kWh/kg	11,5kWh/kg
Cetanzahl	40-55	48-60
Stöchiometr. Luft/Kraftstoff	15	13,8

Bio-Ethanol (als Beimengung zu Ottokraftstoffen)

Herstellung aus Zuckerrohr, Mais, Weizen

Relativ schadstoffarm

Ca. 2500 Liter Bioethanol aus 1 ha Getreide-Anbaufläche

Ca. 5000 Liter Bioethanol aus 1 ha Zuckerrüben-Anbaufläche

Bis 10% in konventionellen Ottomotoren (E10)

Bis 100% in speziellen Motoren (typisch E85)

Geringere Energiedichte als Benzin (ca. 50%)

Etwas höhere Motorenwirkungsgrade

	H	H
H-	c-	C-0-H
	H	H

Dichte	790kg/m³
Siedepunkt	78,4℃
Zündtemperatur	425℃
Energiedichte	ca. 7,4kWh/kg
Flächenertrag	~15 MWh/ha
Photovoltaik (z.B. Region Eisenstadt)	~800 MWh/ha

Lit.: http://www.rhein-erft-kreis.de/stepone/data/downloads/10/7f/00/6_studie_biomasse_nutzung_rek_umweltausschuss.pd

11

Elektronik & Technologiemanagement

Biomasse am Beispiel Holz

Waldbestand in Österreich: 40 000km²

Jährliche Ernte: 19 Mio. m³

Jährliche Ernte (Primärenergie): 38 000 GWh

Flächenertrag (Primärenergie): ~ 10 MWh/ ha

Flächenertrag bei Umwandlung

zu Treibstoff: (Nutzenergie f. Fahrzeuge) ~ 2 MWh/ ha

Flächenertrag Photovoltaik: 480 MWh/ ha

(Nutzenergie für E-Fahrzeug)

Klimabilanz von Biokraftstoffen

Insbesondere durch Düngung entstehen Distickoxide (N₂O "Lachgas")

Laut aktueller Studie von Paul Crutzen (Chemie-Nobelpreis 1995):

Klimaschädlichkeit von Biokraftstoffen im Vergleich zu Diesel/Benzin

- Biodiesel aus Raps: 1,7

- Ethanol aus Mais: 1,5

- Ethanol aus Zuckerrohr: 0,5

→ Stickstoffdüngung ganz allgemein in der Landwirtschaft riesiges Klimaproblem

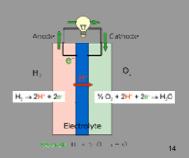
Lit.: http://www.regenwald.org/regenwaldreport.php?artid=181
Lit.: http://www.was.hinotonoost.com/wp-dvn/content/article/2006/06/30/AR 2006063001480.htm

12

Elektronik & Technologiemanagement

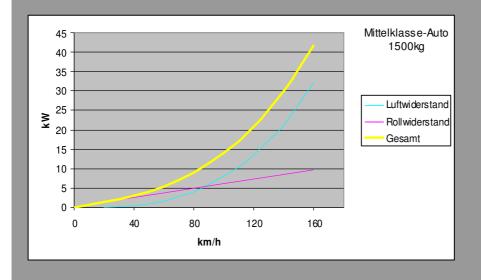
Wasserstoff: der perfekte Energieträger?

Höchste Energiedichte pro kg (33kWh/kg)


Verbrennung zu H₂O

1m³ H₂ Gas nur 90g bei 1 bar

→ Verdichtung od. Verflüssigung für Transport


Energieumwandlung

- Verbrennungsmotor oder
- Brennstoffzelle mit E-Motor

Fahrwiderstand = Nutzleistung

Nutzarbeit

Zubehor

Getriebe

Auspuff

"Verbrauch-Highlights" Porsche Cayenne bei 270km/h: 67I / 100km

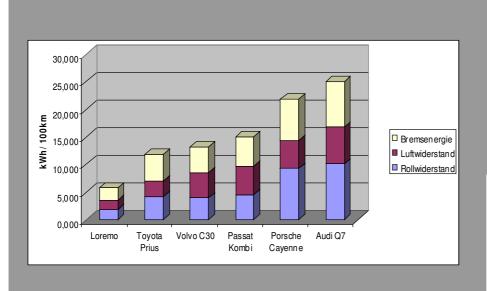
Stadtbus in New-York 67I/100km

C_w-Werte:

SUVs ~ 0,35

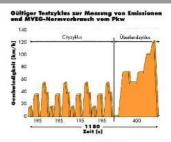
Passat ~ 0,3

Prius ~ 0,26

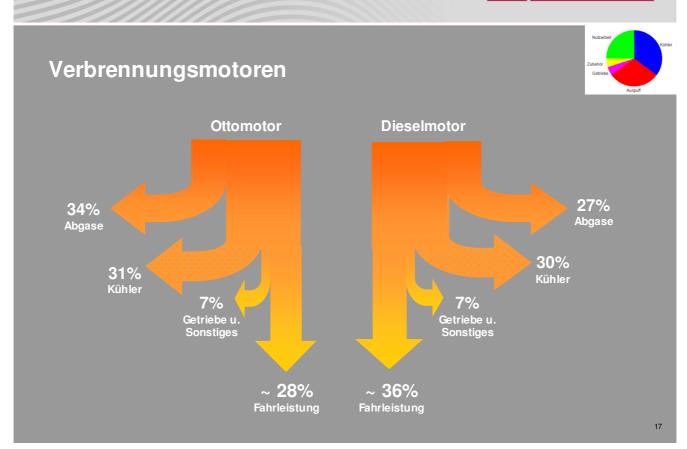

Loremo ~ 0,2

15

Elektronik & Technologiemanagement

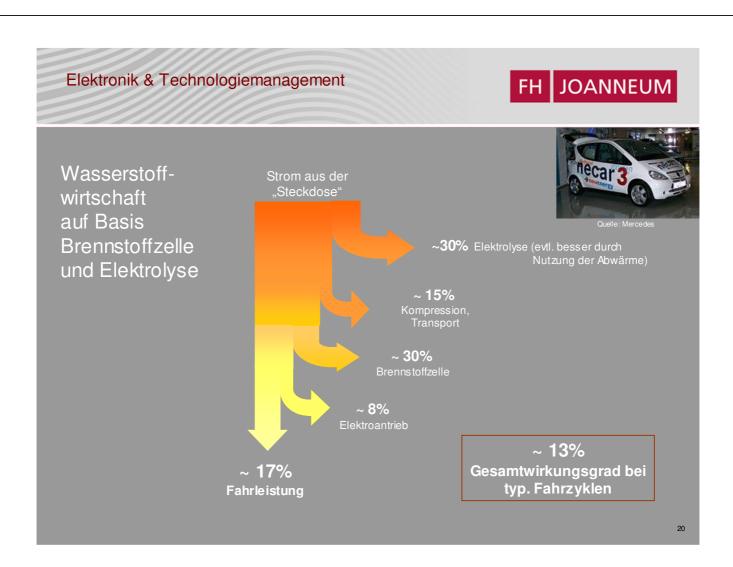


Erforderliche "Nutzenergie" am Beispiel NEFZ (neuer europäischer Fahrzyklus)

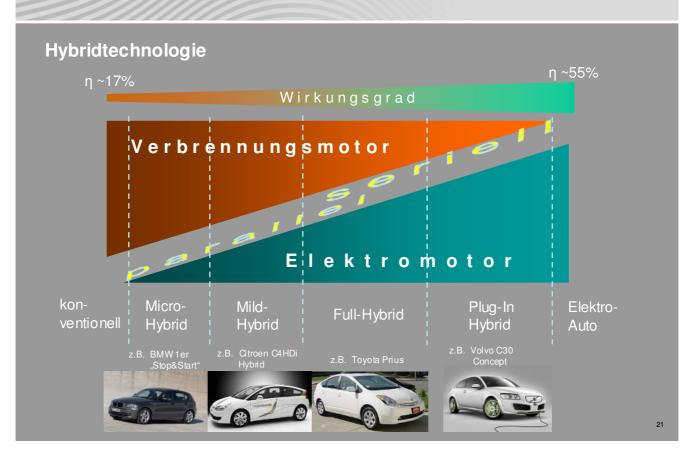


Loremo: Low Resistance Mobile

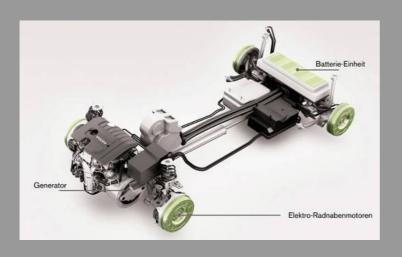
Wirkungsgrad Konventioneller Fahrzeuge


 $\eta = 15 - 20\%$ (f. typische Fahrzyklen)

Drei entscheidende Potentiale


- Verluste im Leerlauf
- Bremsenergie
- Arbeitspunkt Verbrennungsmotor
- → Nutzung durch Hybridtechnologien

Elektroantriebe (modernster Technologie) Strom aus der Steckdose Steckdose Steckdose 3% Ladeschaltung 8% Batterie 2.B. Misubenii Lancer Evolution MEV 5% Wechselrichter u. sonst. Verluste 12% Motor 72 % Fahrleistung 6esamtwirkungsgrad bei typ. Fahrzyklen



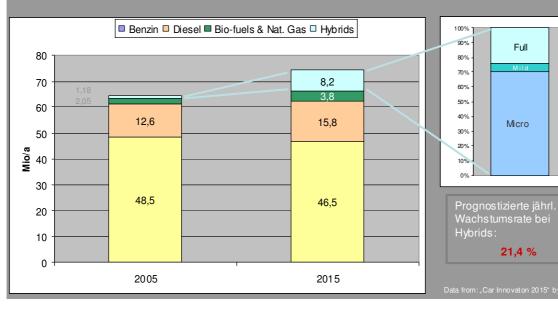
Elektronik & Technologiemanagement

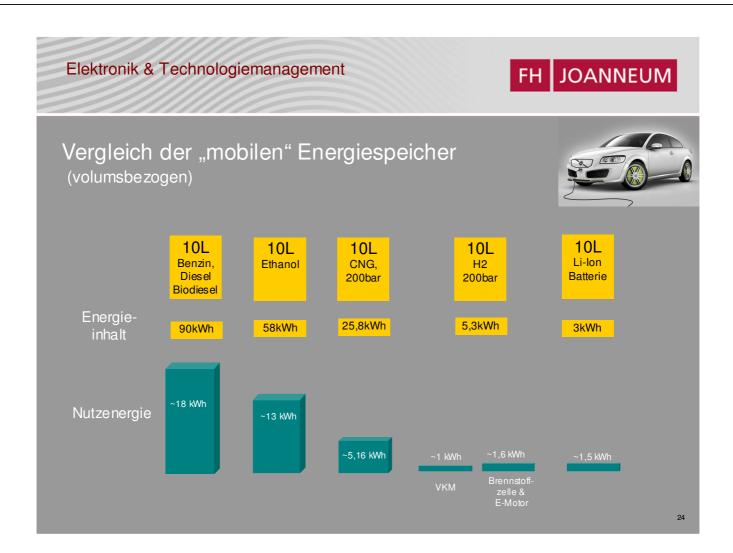
Plug-in-Hybrid Volvo C30 Concept Car

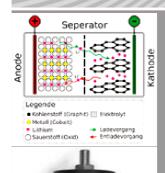
Verbrennungsmotor 1,6L mit Synchrongenerator

Li-lon-Batterie für ca. 100km

Rein se rieller Hybrid


→ Verbrennungsmotor dient nur zum Laden der Batterie


http://www.hy.brid-autos.info/Volvo_ReCharge_Concept_2007-Technik.htm


Prognose Antriebssysteme

Lithium-Ionen Batterie

~ 300Wh/L

Höchste Energiedichte: ~ 150Wh/kg

Hohe Leistungsdichte: ~ 300W/L ~ 150W/kg

Hoher Wirkungsgrad: ~ 92%

In Kombination mit Ultra-Caps vollständige Rückgewinnung der Bremsenergie

Potential für weitere Leistungsverbesserung → Stanford u. andere Research Labs

Sicherheitsprobleme → Toyota verschiebt Einführung auf 2010/11

Elektronik & Technologiemanagement

Elektroauto: Tesla Roadster

6831 Stk. Li-lonen Akkus (Handy-Akkus)

450kg, 55kWh

248 PS Leistung:

von 0–100km/h: 4.2s

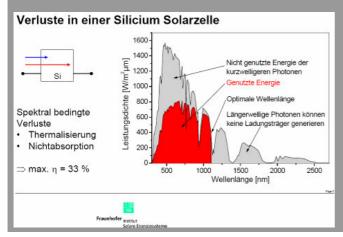
Reichweite: 400km

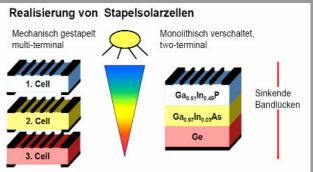
Gewicht: 1220kg

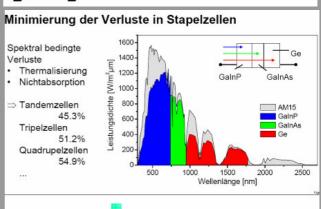
Verbrauch: 13kWh/100km = 1,7l Benzin

Preis: € 80 000,-

Woher kommt der Strom?


2

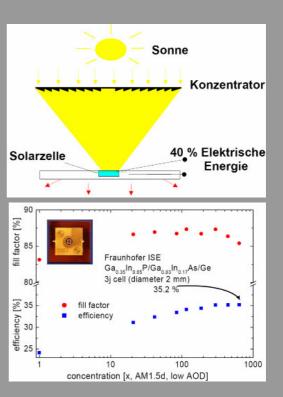

Elektronik & Technologiemanagement FH JOANNEUM Zukunft der alternativen Stromerzeugung am Beispiel der Photovoltaik Wirkungsgradrekord: Mit Stapelzellen und 30ct 40,7% Photovoltaik 20ct 40 MW-Anlage in Sachsen: 10ct €3 / W_p konventionell 2010 2020 2030

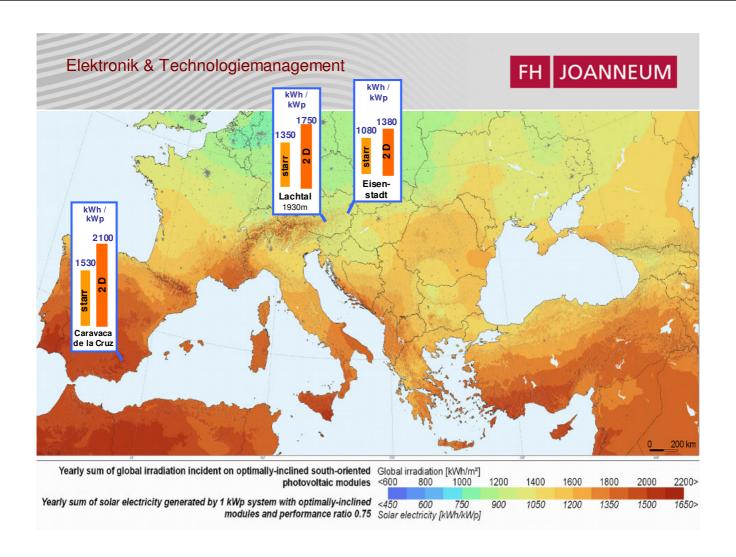


Fortschritte in der Photovoltaik

Source: Fraunhofer ISE

Elektronik & Technologiemanagement




Stapelzellen mit Lichtkonzentratoren

Erreichter Wirkungsgrad: ~ 35%

Source: Fraunhofer ISE

Stromtransport

Hochspannungs-Gleichstromübertragung (HGÜ)

Übertragungsleistung: bis 6GW (z.B. in Kasachstan)

Verluste: ~3% auf 1000km

"Fiktives" Rechenbeispiel für Österreich:

Umstellung aller Straßenfahrzeuge auf Elektroantrieb mit Solarstrom aus Bestlagen in Südspanien (erzeugt mit dzt. am Markt erhältlicher Technologie)

Benzin- u. Dieselverbrauch

für ges. Straßenverkehr: 8,36 Mio t /a

Primärenergie: 100 TWh /a

Preis o. Steuern: ~ € 8,13 Mrd /a

Benötigte elektr. Energie: 33 TWh/a

→ Photovoltaikanlage mit 21,5 GW_n

→ Flächenbedarf: 16km x 16km

→ Preis (einmalig): ~ € 63 Mrd.

warum leider derzeit nur "fiktiv"?

→ Speicherproblem nicht ausreichend gelöst

33

Elektronik & Technologiemanagement

Danke für die Aufmerksamkeit!

FH-Prof. Dipl.-Ing. Dr. Hubert Berger
FH-JOANNEUM
Electronic Engineering &
Technology Management
Head of Degree programme and R&D Depart ment
Werk VI-Straße 46
8605 Kapf enberg
Tel. ++43 (0) 3862 33600 8330
Fax. ++43 (0) 3862 33600 8312

mobile:++43 (0) 664 80 453 8330 e-mail: hubert.berger@fh-joanneum.at